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Abstract
Studies of N = 4 super Yang–Mills operators with large R-charge have shown
that, in the planar limit, the problem of computing their dimensions can be
viewed as a certain spin chain. These spin chains have fundamental ‘magnon’
excitations which obey a dispersion relation that is periodic in the momentum
of the magnons. This result for the dispersion relation was also shown to hold
at arbitrary ’t Hooft coupling. Here we identify these magnons on the string
theory side and we show how to reconcile a periodic dispersion relation with
the continuum worldsheet description. The crucial idea is that the momentum
is interpreted in the string theory side as a certain geometrical angle. We use
these results to compute the energy of a spinning string. We also show that
the symmetries that determine the dispersion relation and that constrain the
S-matrix are the same in the gauge theory and the string theory. We compute
the overall S-matrix at large ’t Hooft coupling using the string description and
we find that it agrees with an earlier conjecture. We also find an infinite number
of two magnon bound states at strong coupling, while at weak coupling this
number is finite.

PACS numbers: 11.15.−q, 11.25.−w, 11.55.−m

(Some figures in this article are in colour only in the electronic version)

1. Introduction

String theory in AdS5 × S5 should be dual to N = 4 Yang–Mills [1–3]. The spectrum of
string states should be the same as the spectrum of operators in the Yang–Mills theory. One
interesting class of operators are those that have very large charges [4]. In particular, we
consider operators where one of the SO(6) charges, J , is taken to infinity. We study states
which have finite E − J . The state with E − J = 0 corresponds to a long chain (or string)
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of Zs, namely to the operator T r[ZJ ]. We can also consider a finite number of other fields W

that propagate along this chain of Zs. In other words we consider operators of the form

Op ∼
∑

l

eilp(· · ·ZZZWZZZ · · ·), (1.1)

where the field W is inserted at position l along the chain. On the gauge theory side the
problem of diagonalizing the planar Hamiltonian reduces to a type of spin chain [5, 6]; see [7]
for reviews and further references. In this context the impurities, W , are ‘magnons’ that move
along the chain.

Using supersymmetry, it was shown that these excitations have a dispersion relation of
the form [9]

E − J =
√

1 +
λ

π2
sin2

p

2
. (1.2)

Note that the periodicity in p comes from the discreteness of the spin chain. The large ’t Hooft
coupling limit of this result is

E − J =
√

λ

π

∣∣∣sin
p

2

∣∣∣ . (1.3)

Since this is a strong coupling result, it should be possible to reproduce it on the string theory
side. At first sight it would seem that such a dispersion relation would require the string
worldsheet to be discrete. In fact, this is not the case. We will show how to recover (1.3) on
the string theory side with the usual strings moving in AdS5 × S5. The key element is that
p becomes a geometrical angle which will explain the periodic result. Thus, we are able to
identify the elementary excitations of the spin chain on the string theory side in an explicit
fashion. The identification of these magnons allows us to explain, from the gauge theory side,
the energy spectrum of the string spinning on S5 which was considered in [11].

We will discuss the presence of extra central charges in the supersymmetry algebra which
match the gauge theory analysis in [9]. Having shown that the two algebras match, then the full
result (1.2) follows. Moreover, as shown in [9], the symmetry algebra constrains the 2 → 2
S-matrix for these excitations up to an overall phase. This S-matrix is the asymptotic S-matrix
discussed in [31]. It should be emphasized that these magnons are the fundamental degrees
of freedom in terms of which we can construct all other states of the system. Integrability
[23, 29, 30] implies that the scattering of these excitations is dispersionless. We check that
this is indeed the case classically and we compute the classical time delay for the scattering
process. This determines the large ’t Hooft coupling limit of the scattering phase. The final
result agrees with the large λ limit of [12]. This is done by exploiting a connection with the
sine-Gordon model [25, 26]. We also find that at strong coupling there is an infinite number
of bound states of two magnons. These bound states have more energy than the energies of
the individual magnons.

This paper is organized as follows. In section 2 we explain the string theory picture for the
magnons. We start by defining a particular limit that lets us isolate the states we are interested
in. We continue with a review of gauge theory results in this limit. Then we find solutions
of the classical sigma model action which describe magnons. We present these solutions
in various coordinate systems. We also explain how the symmetry algebra is enhanced by
the appearance of extra central charges, as in the gauge theory side [9]. Finally, we end by
applying these results to the computation of the energy of a spinning string configuration in
S5 considered in [2]. In section 3 we compute the S-matrix at strong coupling and we analyse
the bound state spectrum.

In appendix A we give some details on the supersymmetry algebra. In appendix B we
give some more details on the spectrum of bound states.
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2. Elementary excitations on an infinite string

2.1. A large J limit

Let us start by specifying the limit that we are going to consider. We will first take the ordinary
’t Hooft limit. Thus we will consider free strings in AdS5 × S5 and planar diagrams in the
gauge theory. We then pick a generator J = J56 ⊂ so(6) and consider the limit when J is
very large. We will consider states with energies E (or operators with conformal dimension
� = E) which are such that E − J stays finite in the limit. We keep the ’t Hooft coupling
λ ≡ g2N fixed. This limit can be considered both on the gauge theory and the string theory
sides and we can interpolate between them by varying the ’t Hooft coupling after having taken
the large J limit. In addition, when we consider an excitation we will keep its momentum p
fixed. In summary, the limit that we are considering is

J → ∞, λ = g2N = fixed (2.1)

p = fixed, E − J = fixed. (2.2)

This differs from the plane wave limit [4] in two ways. First, here we are keeping λ fixed,
while in [4] it was taken to infinity. Second, here we are keeping p fixed, while in [4] n = pJ

was kept fixed.
One nice feature of this limit is that it decouples quantum effects which are characterized

by λ, from finite J effects, or finite volume effects on the string worldsheet3.
Also, in this limit, we can forget about the momentum constraint and think about single

particle excitations with non-zero momentum. Of course, when we take J large but finite, we
will need to reintroduce the momentum constraint.

2.2. Review of gauge theory results

In this subsection we will review the derivation of formula (1.2). This formula could probably
have been obtained in [8] had they not made a small momentum approximation at the end.
This formula also emerged via perturbative computations [7]. A heuristic explanation was
given in [14], which is very close to the string picture that we will find below. Here we will
follow the treatment in [9] which exploits some interesting features of the symmetries of the
problem.

The ground state of the system, the state with E −J = 0, preserves 16 supersymmetries4.
These supercharges, which have E − J = 0, act linearly on the impurities or magnons.
They transform as (2, 1, 2, 1) + (1, 2, 1, 2) under SU(2)S5,L × SU(2)S5,R × SU(2)AdS5,L ×
SU(2)AdS5,R , where the various SU(2) groups correspond to the rotations in AdS5 and S5

which leave Z invariant. These supercharges are the odd generators of two SU(2|2) groups5.
The energy ε ≡ E − J is the (non-compact) U(1) generator in each of the two SU(2|2)

supergroups. In other words, the two U(1) s of the two SU(2|2) groups are identified. A single
impurity with p = 0 transforms in the smallest BPS representation of these two supergroups.
In total, the representation has eight bosons plus eight fermions. This representation is BPS
because its energy is ε = E − J = 1 which follows from the BPS bound that links the
energy to the SU(2)4 charges of the excitations. Let us now consider excitations with small
momentum p. At small p we can view the dispersion relation as that of a relativistic theory.

3 The importance of decoupling these two effects was emphasized in [13].
4 More precisely it is annihilated by 16 + 8, but the last 8 act nonlinearly on the excitations, they correspond to
fermionic impurity annihilation operators with zero momentum.
5 Note that they are not PSU(2|2) groups.
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Note that as we add a small momentum, the energy becomes higher but we still expect to have
eight bosons plus eight fermions and not more, as it would be the case for representations of
SU(2|2)2 with ε > 1. What happens is that the momentum appears on the right-hand side
of the supersymmetry algebra. This ensures that the representation is still BPS. In fact, for
finite p there are two central charges [9]. These extra generators add or remove Zs to the left
or right of the excitation and they originate from the commutator terms in the supersymmetry
transformation laws, namely terms like δW ∼ ψ + [Z, χ ], see [9]. These extra central charges
are zero for physical states with finite J since we will impose the momentum constraint.

The full final algebra has thus three ‘central’ generators on the right-hand side; they are the
energy ε and two extra charges which we call k1, k2. Together with the energy these charges
can be viewed as the three momenta kµ of a (2+1)-dimensional Poincaré superalgebra. This
is the same as the (2+1)-dimensional Poincaré superalgebra recently studied in [15, 16], we
will see below that this is not a coincidence. Note that the Lorentz generators are an outer
automorphism of this algebra but they are not a symmetry of the problem we are considering.
See appendix A for a more detailed discussion of the algebra.

As explained in [9] the expression for the ‘momenta’ is k1 + ik2 = h(λ)(eip − 1) and
similarly for the complex conjugate. This then implies that we have the formula

E − J = k0 =
√

1 + |k1 + ik2|2 =
√

1 + f (λ) sin2
p

2
. (2.3)

The function f (λ) is not determined by this symmetry argument. We know that f (λ) = λ
π

up
to three loops in the gauge theory [5, 17] and that it is also the same at strong coupling (where
it was checked at small momenta in [4]). [8] claims to show it is exactly f = λ

π
for all values

of the coupling, but we do not fully understand the argument6.
In the plane wave matrix model [4, 10] one can also use the symmetry algebra to determine

a dispersion relation as in (2.3) and the function f (λ) is nontrivial. More precisely, large J

states in the plane wave matrix model have an SU(2|2) group (extended by the central charges
to a 2+1 Poincaré superalgebra) that acts on the impurities.

The conclusion is that elementary excitations moving along the string are BPS under
the 16 supersymmetries that are linearly realized. Supersymmetry then ensures that we can
compute the precise mass formula once we know the expression for the central charges.

2.3. String theory description at large λ

We will now give the description of the elementary impurities or elementary magnons at large
λ from the string theory side. In this regime we can trust the classical approximation to the
string sigma model in AdS5 × S5.

In order to understand the solutions that we are going to study, it is convenient to consider
first a string in flat space. We choose light cone gauge, with X+ = τ , and consider a string with
large P−. The solution with P+ = 0 corresponds to a light-like trajectory with X− = constant,
see figures 1(a) and (c). Now suppose that we put two localized excitations carrying worldsheet
momentum p and −p respectively. Let us suppose that at some instant of time these are on
opposite points of the worldsheet spatial circle, see figure 1(b). We want to understand the
spacetime description of such states. It is clear that the region to the left of the excitations and
the region to the right will be mapped to the same light-like trajectories with X− = constant

6 It is not clear to us why in equation (2.7) in [8] we could not have a function of λ on the right-hand side.
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Figure 1. Localized excitations propagating along the flat space string worldsheet in light cone
gauge. (a) Worldsheet picture of the light cone ground state, with P+ = 0. (b) Worldsheet picture
of two localized excitations with opposite momenta propagating along the string. (c) Spacetime
description of the configurations in (a) and (b). The configuration in (a) gives a straight line at a
constant X−. The configuration in (b) gives two straight lines at constant X− when the localized
excitations are separated on the worldsheet. When the two excitations in (b) cross each other the
lines move in X−. (d) Snapshot of the spacetime configuration in (b), (c) at a given time t.

that we considered before. The important point is that these two trajectories sit at different
values of X−. This can be seen by writing the Virasoro constraint as

∂σX− = 2πα′Tτσ , �X− = 2πα′
∫

dσTτσ = 2πα′p, (2.4)

where Tτσ is the worldsheet stress tensor of the transverse excitations and we have integrated
across the region where the excitation with momentum p is localized. Thus the final spacetime
picture is that we have two particles that move along light-like trajectories that are joined
by a string. At a given time t the two particles move at the speed of light separated by
�X1|t = �X−|X+ = 2πα′p and joined by a string, see figure 1(d). Of course, the string takes
momentum from the leading particle and transfers it to the trailing one. On the worldsheet this
corresponds to the two localized excitations moving towards each other. As the worldsheet
excitations pass through each other, the trailing particle becomes the leading one, see
figure 1(c). For a closed string X− should be periodic, which leads to the momentum
constraint ptotal = 0.

In the limit of an infinite string, or infinite P−, we can consider a single excitation with
momentum p along an infinite string. Then the spacetime picture will be that of figure 2 where
we have two light-like trajectories, each carrying infinite P−, separated by �X− ∼ p which
are joined by a string. There is some P− being transferred from the first to the second. But
since P− was infinite this can continue happening for ever7. The precise shape of the string
that joins the two points depends on the precise set of transverse excitations that are carrying
momentum p.

7 As a side remark, note that these light-like trajectories look a bit like light-like D-branes, which could be viewed
as small giant gravitons in the AdS5 × S5 case. In this paper we take the ’t Hooft limit before the large J limit so we
can ignore giant gravitons. But it might be worth exploring this further. Strings ending in giant gravitons have been
recently studied in [18].
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Figure 2. Localized excitations propagating on an infinite string. (a) Worldsheet picture of a
localized excitation propagating along the string. (b) Spacetime behaviour of the state in light cone
coordinates. We have two light-like lines with a string stretching between them. (c) Snapshot of
the state at a given time. The configuration moves to the right at the speed of light.

Armed with the intuition from the flat space case, we can now go back to the AdS5 × S5

case. We write the metric of S5 as

ds2 = sin2 θ dϕ2 + dθ2 + cos2 θ d�2
3, (2.5)

where ϕ is the coordinate that is shifted by J . The string ground state, with E − J = 0,
corresponds to a light-like trajectory that moves along ϕ, with ϕ − t = constant, that sits at
θ = π/2 and at the origin of the spatial directions of AdS5.

We can find the solution we are looking for in various ways. We are interested in finding
the configuration which carries momentum p with least amount of energy ε = E − J . For the
moment let us find a solution with the expected properties and we will later show that it has
the minimum amount of energy for fixed p. We first pick a pair of antipodal points on S3 so
that, together with the coordinate θ and ϕ, they form an S2. After we include time, the motion
takes place in R × S2. We can now write the Nambu action choosing the parametrization

t = τ, ϕ − t = ϕ̃, (2.6)

and we consider a configuration where θ is independent of τ . We then find that the action
reduces to

S =
√

λ

2π

∫
dt dϕ̃

√
cos2 θθ ′2 + sin2 θ. (2.7)

It is easy to integrate the equations of motion and we get

sin θ = sin θ0

cos ϕ̃
, −

(π

2
− θ0

)
� ϕ̃ � π

2
− θ0, (2.8)

where 0 � θ0 � π/2 is an integration constant. See figure 3. In these variables the string has
finite worldsheet extent, but the regions near the end points are carrying an infinite amount
of J . We see that for this solution the difference in angle between the two end points of the
string at a given time t is

�ϕ̃ = �ϕ = 2
(π

2
− θ0

)
. (2.9)

It is also easy to compute the energy

E − J =
√

λ

π
cos θ0 =

√
λ

π
sin

�ϕ

2
. (2.10)
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Figure 3. Giant magnon solution to the classical equations. The momentum of the state is given
by the angular distance between the end points of the string. We depicted a configuration with
0 < p < π . A configuration with negative momentum would look like the same except that the
orientation of the string would be reversed. The string end points are on the equator and they move
at the speed of light.

We now propose the following identification for the momentum p:

�ϕ = p. (2.11)

We will later see more evidence for this relation. Once we use this relation (2.10) becomes

E − J =
√

λ

π

∣∣∣sin
p

2

∣∣∣ (2.12)

in perfect agreement with the large λ limit (1.3) of the gauge theory result (1.2). The sign of
p is related to the orientation of the string. In other words, �ϕ is the angular position of the
end point of the string minus that of the starting point and it can be negative.

In order to make a more direct comparison with the gauge theory it is useful to pick a
gauge on the worldsheet in such a way that, for the string ground state (with E − J = 0), the
density of J is constant8. There are various ways of doing this. One specific choice would
be the light cone gauge introduced in [19]. We will now do something a bit different which
can be done easily for strings on R × S2 and which will turn out useful for our later purposes.
This consists in choosing conformal gauge and setting t = τ . x labels the worldsheet spatial
coordinate. In this gauge the previous solution takes the form

cos θ = cos θ0

cosh
[

x−sin θ0t

cos θ0

] = sin p

2

cosh
[ x−cos p

2 t

sin p

2

]
tan(ϕ − t) = cot θ0 tanh

[
x − sin θ0t

cos θ0

]
= tan

p

2
tanh

[
x − cos p

2 t

sin p

2

]
,

(2.13)

where we used (2.11). In this case we see that the range of x is infinite. These coordinates
have the property that the density of J away from the excitation is constant. This property
allows us to make an identification between the coordinate x and the position l (see (1.1))
along the chain in the gauge theory. More precisely, we compute the density of J per unit x
in order to relate l and x

dJ

dx
=

√
λ

2π
, or dl =

√
λ

2π
dx. (2.14)

This relation allows us to check the identification of the momentum (2.11) since the relation
between energy and momentum (1.3) determines the velocity in the gauge theory through the
usual formula

vgauge = dl

dt
= dε(p)

dp
=

√
λ

2π
cos

p

2
, for p > 0. (2.15)

8 Note that we only require J to be constant away from the excitations, it could or could not be constant in the regions
where E − J > 0.
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e

2x

x1
(a) (b)

Figure 4. Giant magnons in LLM coordinates (2.17). (a) A giant magnon solution looks like a
straight stretched string. Its momentum p is the angle subtended on the circle. k1 and k2 are the
projections of the string along the directions 1̂ and 2̂. The direction of the string gives the phase
of k1 + ik2, while its length gives the absolute value of the same quantity. (b) A closed string state
built of magnons that are well separated on the worldsheet. Note that the total central charges
k1, k2 vanish. Similarly the total angle subtended by the string, which is the total momentum ptotal
also vanishes modulo 2π .

On the other hand, we see from (2.13) that the velocity is

vstring = dx

dt
= sin θ0 = cos

�ϕ

2
. (2.16)

We see that after taking into account (2.14) the two velocities become identical if we make
the identification (2.11).

The solution becomes simpler if expressed in terms of the coordinates introduced in [20].
Those coordinates were specially adapted to describe 1/2 BPS states which carry the charge
J . So it is not surprising that they are also useful for describing small excitations around
such states. The AdS5 × S5 metric in those coordinates is a fibration of R, characterizing
the time direction, and two S3s (coming form AdS5 and S5) over a three-dimensional space
characterized by coordinates x1, x2, y. The plane y = 0 is special because one of the two
3-spheres shrinks to zero size in a smooth way. Thus the plane y = 0 is divided into regions (or
‘droplets’) where one or the other S3 shrinks to zero size. The AdS5 × S5 solution contains a
single circular droplet of radius R where S3 coming from AdS5 shrinks, see figure 4. Particles
carrying E − J = 0 live on the boundary of the two regions. In fact the circle constituting the
boundary of the two regions sits at θ = π/2 and it is parameterized by ϕ̃ = ϕ − t in previous
coordinates. We will be only interested in the metric on this special plane at y = 0 which
takes the form, for r < 1,

ds2 = R2

{
−(1 − r2)

[
dt − r2

(1 − r2)
dϕ̃

]2

+
dr2 + r2 dϕ̃2

(1 − r2)
+ (1 − r2) d�2

3 + · · ·
}

, (2.17)

where r2 = sin2 θ = x2
1 + x2

2 and the dots remind us that we are ignoring the y coordinate and
the second sphere, which has zero size at y = 0 for r � 1.

In these coordinates the solution is simply a straight line that joins two points of the circle
as shown in figure 4(a). This can be seen from (2.8), which can be rewritten as

r cos ϕ̃ = x1 = const. (2.18)

The energy is simply the length of the string measured with the flat metric on the plane
parameterized by x1, x2; ds2

flat = R2
(
dx2

1 + dx2
2

)
. In fact, the picture we are finding here is
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almost identical to that discussed from the gauge theory point of view in [14].9 If we restrict
the arguments in [14] to 1/2 BPS states and their excitations we can see how this picture
emerges from the gauge theory point of view. Namely, we first diagonalize the matrix Z
in terms of eigenvalues. Then the impurity is an off diagonal element of a second matrix
W which joins two eigenvalues that are at different points along the circle. The energy
formula follows from the commutator term tr|[Z,W ]|2 in the gauge theory; see [14] for more
details.

These coordinates are very useful for analysing the symmetries. In particular, we will
now explain the appearance of extra central charges and we will match the superalgebra
to that found on the gauge theory side in [9]. Under general considerations we know that
the anticommutator of two supersymmetries in ten-dimensional supergravity contains gauge
transformations for the NS-B2 field [21]. These act non-trivially on stretched strings. In
flat space this leads to the fact that straight strings are BPS. In fact, by inserting the explicit
expression of the Killing spinors in [20] into the general formula for the anticommutator of
two supercharges [21] it is possible to see that the relevant NS gauge transformations are those
with a constant gauge parameter �1,�2, δB = d�.10 Strings that are stretched along the 1̂
or 2̂ directions acquire a phase under such gauge transformations. Thus these are the central
charges that we are after. Note that in order to activate these central charges it is not necessary
to have a compact circle in the geometry. In fact, the string stretched between two separated
D-branes in flat space is BPS for the same reason11.

Actually, the supersymmetry algebra is identical to a supersymmetry algebra in 2+1
dimensions, where the string winding charges, k1, k2, play the role of the spatial momenta12.
See appendix A for more details on the algebra. From the (2+1)-dimensional point of view
it is a peculiar Poincaré superalgebra since it has SO(4)2 charges on the right-hand side of
supersymmetry anti-commutators. Of course, this is the same supersymmetry algebra that
appeared in the gauge theory discussion [9]. In conclusion, the symmetry algebra is exactly
the same on both sides. The extra central charges are related to string winding charges. We can
think of the vector given by the stretched string as the two spatial momenta k1, k2 appearing
in the Poincaré superalgebra. In other words, we can literally think of the stretched string in
figure 4 as specifying a vector k1, k2 of size

k1 + ik2 = R2

2πα′ (e
ip − 1) = i

√
λ

π
ei p

2 sin
p

2
. (2.19)

Then the usual relativistic formula for the energy implies (2.3), as in the gauge theory. Note that
the problem we are considering does not have lorentz invariance in 2+1 dimensions. Lorentz
invariance is an outer automorphism of the algebra that is useful for analysing representations
of the algebra, but it is not an actual symmetry of the theory. In particular, in our problem
formula (2.3) is not a consequence of boost invariance, since boosts are not a symmetry13.
It is a consequence of supersymmetry, it is a BPS formula. Note that rotations of k1, k2 are
indeed a symmetry of the problem and they correspond to rotations of the circle in figure 4.
This is the symmetry generated by J . Note also that a physical state with large but finite J

9 The difference is that [14] considered an S5 in R6 and a string stretching between two points on S5 through R6.
10 The requisite spinor bilinear is closely related to the one in equation (A.45) of [20]. Namely, the expression in [21]
involves terms of the form ε̄∗

1 γ µε2, which becomes εt�2�µε in the notation of [20].
11 If we think of the string with J = ∞ as a light-like D-brane, the analogy becomes closer.
12 All these statements are independent of the shape of the droplets in [20]. This particular statement is easiest to
see if we consider droplets on a torus and we perform a T-duality which takes us to a (2+1)-dimensional Poincaré
invariant theory (in the limit the original torus is very small). This is a theory studied in [16, 20]. This also explains
why the supersymmetry algebra is the same in the two problems.
13 One might wonder whether boosts are a hidden symmetry of the string sigma model. This is not the case because
we can increase |k| without bound by performing a boost, while physically we know that |k| is bounded as in (2.19).
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will consist of several magnons, but the configurations should be such that we end up with a
closed string, see figure 4(b). Thus, for ordinary closed strings the total value of the central
charges is zero, since there is no net string winding. This implies, in particular, that for a
closed finite J string there are no new BPS states other than the usual ones corresponding to
operators Tr[ZJ ].

Note that the classical string formula (2.10) is missing a 1 in the square root as compared
to (1.2). This is no contradiction since we were taking p fixed and λ large when we did the
classical computation. This 1 should appear after we quantize the system. In fact, for small
p and λ large, we can make a plane wave approximation and, after quantization, we recover
the 1 [4, 22]. But if we did not quantize we would not get the 1, even in the plane wave
limit. So we see that in the regime that the 1 is important we indeed recover it by doing
the semiclassical quantization. This 1 is also implied by the supersymmetry algebra. The
argument is identical to that in [9] once we realize that the central charges are present and
we know the relation between the central charges and the momentum p, as in (2.19). Note
that the classical solutions we discussed above break the SO(4) symmetry since they involve
picking a point on S3 ⊂ S5 where the straight string in figure 4(a) is sitting. Upon collective
coordinate quantization we expect that the string wavefunction will be constant on this S3. In
addition, we expect to have fermion zero modes. They originate from the fact that the magnon
breaks half of the 16 supersymmetries that are left unbroken by the string ground state. Thus
we expect eight fermion zero modes, which, after quantization, will give rise to 24 = 16 states,
8 fermions + 8 bosons. This argument is correct for fixed p and large λ. In fact, all these
arguments are essentially the same as those we would make for a string stretching between
two D-branes. Note that all magnons look like stretched strings in the S5 directions, as in
figure 4(a), including magnons corresponding to insertions of ∂µZ which parameterize
elementary excitations along the AdS5 directions. Of course, here we are considering a
single magnon. Configurations with many magnons can have large excursions into the AdS
directions.

Since the stretched string solution in figure 4(a) is BPS, it is the minimum energy state
for a given p.

In fact, we can consider large J string states around other 1/2 BPS geometries, given
by different droplet shapes as in [20]. In those cases, we will have BPS configurations
corresponding to strings ending at different points on the boundary of the droplets and we
have strings stretching between these points. It would be nice to see if the resulting worldsheet
model is integrable.

Note that the fact that the magnons have a large size (are ‘giant’) at strong coupling is
also present in the Hubbard model description in [44]14.

Finally, let us point out that our discussion of the classical string solutions focussed on an
R × S2 subspace of the geometry. Therefore, the same solutions will describe giant magnons
in the plane wave matrix model [4, 10] and other related theories [15]. Similar solutions also
exist in AdS2,3 × S2,3 with RR fluxes (NS fluxes would change the equations already at the
classical level).

2.4. Spinning folded string

In this subsection we apply the ideas discussed above to compute the energy of a spinning
folded string considered in [11]. This is a string that rotates in an S2 inside S5. For small
angular momentum J this is a string rotating around the north pole. Here we are interested in

14 We thank M Staudacher for pointing this out to us.
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Figure 5. Spinning string configuration that corresponds to two magnons with p = π .

the limit of large J where the ends of the rotating string approach the equator; see figure 5. In
this limit the energy of the string becomes [11]

E − J = 2

√
λ

π
. (2.20)

This string corresponds to a superposition of two ‘magnons’ each with maximum
momentum, p = π . Note that the dispersion relation implies that such magnons are at
rest, see (2.15). They are equally spaced on the worldsheet. At large J we can ignore the
interaction between the ‘magnons’ and compute the energy of the state as a superposition of
two magnons. We see that the energy (2.20) agrees precisely with the energy of two magnons
with p = π .

Since the λ dependence of the strings spinning in AdS in [2] is somewhat similar, one
might find an argument for that case too. In fact, the solutions we are considering here, such
as that in figure 4(b) is the sphere analogue of the solutions with spikes considered in [45].

3. Semiclassical S-matrix

3.1. General constraints on the S-matrix

In this section we consider the S-matrix for scattering of two magnons. On the gauge theory
side this is the so-called ‘asymptotic S-matrix’ discussed in [31]. In the string theory side it is
defined in a similar way: we take two magnons and scatter them. Then, we define the S-matrix
for asymptotic states as we normally do in (1+1)-dimensional field theories. Since the sigma
model is integrable [29, 30], we expect to have factorized scattering. It was shown in [23] that
integrability still persists in the light cone gauge (this was shown ignoring the fermions).
In fact we will later check explicitly that our magnons undergo classical dispersionless
scattering.

As we mentioned above the supersymmetry algebra is the same in the gauge theory and
the string theory. We have only shown here that the algebra is the same at the classical level
on the string theory side. But it is very natural to think that after quantization we will still have
the same algebra. Thus, any constraint coming from this algebra is the same. An important
constraint for the S-matrix was derived by Beisert in [9]. Each of the magnons can be in one
of 16 states (eight bosons plus eight fermions). So the scattering matrix is a 162 × 162 matrix.
Beisert showed that this matrix is completely fixed by the symmetry up to an overall phase
(and some phases that can be absorbed in field redefinitions). Schematically S = Ŝij S0, where
Ŝij is a known matrix and S0 is an unknown phase. The same result holds then for the string
theory magnons. In fact, it was conjectured in [12, 31, 32] that the two S-matrices differ by a
phase. Here we are pointing out that this structure is a consequence of the symmetries on the
two sides. The fact that the whole S-matrix is determined up to a single function is analogous
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Figure 6. Scattering of 2 → 2 magnons. (a) Worldsheet picture of asymptotic initial state.
(b) Worldsheet picture of asymptotic final state. (c) Initial state in LLM coordinates. (d) Final
state in LLM coordinates. (e) Initial and final configuration for the momenta 	k that are relevant for
the (2+1)-dimensional kinematics of the process.

to the statement that the four-particle scattering amplitude in N = 4 SYM is fixed up to a
scalar function of the kinematic invariants. The reason is that two massless particles with 16
states each give a single massive, non-BPS, representation with 28 = 162 states.

A two magnon scattering process has a kinematics that is shown in figure 6. Note that we
can literally think of the straight strings as determining the initial and final momentum vectors
of the scattering process as in figure 6(e). The orientation of these vectors is important. The
constraints on the matrix structure of the S-matrix are exactly the same as the constraints that
a four particle scattering amplitude in a relativistic (2+1)-dimensional field theory with the
same superalgebra would have. These constraints are easy to derive in the centre-of-mass
frame. And we could then boost to a general frame. Note that from the (2+1)-dimensional
point of view fermions have spin, and thus their states acquire extra phases under rotation. In
other words, when we label a state by saying what its momentum p is, we are just giving the
magnitude of 	k, but not its orientation. The orientation of 	k depends on the other magnons.
For example, in the scattering process of figure 6(a), (b) the initial and final states have the
same momenta p, p′, but the initial vectors 	ki, 	k′

i have different orientation than the final
vectors 	kf , 	k′

f . When we consider a sequence of scattering processes, one after the other, it is

important to keep track of the orientation of 	k. In other words, under an overall rotation the
S-matrix is not invariant, it picks up some phases due to the fermion spins. In [9] these phases
are taken into account by extra insertions of the field Z which makes the chain ‘dynamic’.

Note that the constraints on the matrix structure of the scattering amplitude are applicable
in a more general context to any droplet configuration of [20]. For example, it constrains the
scattering amplitude for elementary excitations in other theories with the same superalgebra.
Examples are the massive M2 brane theory [33] or the theories considered in [15, 16].

Note that the existence of closed subsectors is a property of factorized scattering
(integrability) and the matrix structure of the Ŝ matrix, but does not depend on the precise
nature of the overall phase. Thus closed subsectors exist on both sides. This argument shows
this only in the large J limit where the magnons are well separated and we can use the
asymptotic S-matrix15.

15 Note that this is not obviously in contradiction with the arguments against closed subsectors on the string theory
side that were made in [34], which considered finite J configurations.



Giant magnons 13107

We expect that the overall phase, S0, will interpolate between the weak and strong coupling
results. The full interpolating function has not yet been determined16.

In this section we will compute in a direct, and rather straightforward way, the
semiclassical S-matrix for the scattering of string theory magnons. It turns out that the
result will agree with that derived in [12] through more indirect methods.

Note that at large ’t Hooft coupling and fixed momentum, the approximate expression (1.3)
amounts to a relativistic approximation to the non-relativistic formula (1.2). Similarly, in this
limit, the matrix prefactor Ŝ becomes that of a relativistic theory and it is a bit simpler.

Note that the theory in light cone gauge is essentially massive so that we can define
scattering processes in a rather sharp fashion, in contrast to the full covariant sigma model
which is conformal, a fact that complicates the scattering picture. Nevertheless, starting from
the conformal sigma model can be a useful way to proceed [13].

3.2. Scattering phase at large λ and the sine-Gordon connection

In the semiclassical limit where λ is large and p is kept fixed the leading contribution to the
S-matrix comes from the phase δ in S0 = eiδ , which goes as δ ∼ √

λf (p, p′). For fixed
momenta, this phase dominates over the terms that come from the matrix structure Ŝ in the
scattering matrix. In this section, we compute this phase, ignoring the matrix prefactor Ŝ in
the S-matrix.

In the semiclassical approximation the phase shift can be computed by calculating the
time delay that is accumulated when two magnons scatter. The computation is very similar
to the computation of the semiclassical phase for the scattering of two sine-Gordon solitons,
as computed in [24]. In fact, the computation is almost identical because the magnons we
discuss are in direct correspondence with sine-Gordon solitons. This uses the relation between
the classical sine-Gordon theory and the classical string theory on R × S2 [25, 26].17 It is
probably also possible to obtain these results from [28], but we found it easier to do it using
the correspondence to the sine-Gordon theory. The map between a classical string theory on
R×S2 and the sine-Gordon model goes as follows. We consider the string action in conformal
gauge and we set t = τ . Then the Virasoro constraints become

1 = ṅ2 + n′2, ṅ.n′ = 0, (3.1)

where n2 = 1 parameterizes the S2. The equations of motion follow from these constraints.
The sine-Gordon field is defined via

cos 2φ = ṅ2 − n′2. (3.2)

For the ‘magnon’ solution we had above we find that φ is the sine-Gordon soliton

tan
φ

2
= exp

[
cos p

2 t − x

sin p

2

]
= e−γ (x−vt), v = cos

p

2
, γ −2 = 1 − v2. (3.3)

Note that the energy of the sine-Gordon soliton is inversely proportional to the string theory
energy of the excitation (2.10)

Esg = γ = cosh θ̂ , εmagnon =
√

λ

π

1

γ
, cosh θ̂ = 1

sin p

2

, (3.4)

where we measure the sine-Gordon energy relative to the energy of a soliton at rest and we
introduced the sine Gordon rapidity θ̂ . Note that a boost on the sine-Gordon side translates

16 There is of course (the very unlikely possibility) that the two phases are different and that AdS/CFT is wrong.
17 As explained in [27] the two theories have different Poisson structures so that their quantum versions are different.
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into a non-obvious classical symmetry on the R × S2 side. Do not confuse this approximate
boost symmetry of the sine-Gordon theory with the boosts that appeared in our discussion of
the supersymmetry algebra. Neither of them is a true symmetry of the problem, but they are
not the same!.

We now consider a soliton–anti-soliton pair and we compute the time delay for their
scattering as in [24]. (If we use a soliton–soliton pair we obtain the same classical answer)18.
Since the x and t coordinates are the same in the two theories, this time delay is precisely
the same for the string theory magnons and for the sine-Gordon solitons. The sine-Gordon
scattering solution in the centre-of-mass frame is

tan
φ

2
= 1

v

sinh γ vt

cosh γ x
. (3.5)

The fact that the sine-Gordon scattering is dispersionless implies that the scattering of magnons
is also dispersionless in the classical limit (of course, we also expect it to be dispersionless in
the quantum theory).

The time delay is

�TCM = 2

γ v
log v. (3.6)

We now boost configuration (3.5) to a frame where we have a soliton moving with velocity
v1 and an anti-soliton with velocity v2, with v1 > v2. Then the time delay that particle 1
experiences as it goes through particle 2 is

�T12 = 2

γ1v1
log vcm, (3.7)

where v is the velocity in the centre-of-mass frame:

2 log vcm = 2 log tanh

[
θ̂1 − θ̂2

2

]
= log

[
1 − cos p1−p2

2

1 − cos p1+p2

2

]
, for p1, p2 > 0. (3.8)

We can now compute the phase shift from the formula

∂δ12(ε1, ε2)

∂ε1
= �T12. (3.9)

We obtain

δ =
√

λ

π

{[
−cos

p1

2
+ cos

p2

2

]
log

[
1 − cos p1−p2

2

1 − cos p1+p2

2

]}
− p1

√
λ

π
sin

p2

2
. (3.10)

Note that, even though the time delay is identical to the sine-Gordon one, the phase shift is
different due to the different expression for the energy (3.4). This implies, in particular, that
the phase shift is not invariant under sine-Gordon boosts. The first term in this expression
agrees precisely with the large λ limit of the phase in [12]19. The second term in (3.10) looks
a bit funny. However, we need to recall that the definition of this S-matrix is a bit ambiguous.
This ambiguity is easily seen in the string theory side and was noted before. For example [35]
and [36] obtained different S-matrices for the scattering of magnons at low momentum (near
plane wave limit). The difference is due to a different choice of gauge which translates into a
different choice of worldsheet x variable. In [35] the x variable was defined in such a way that

18 In fact, for a given p we have a family of magnons given by a choice of a point on S3 which is telling us how the
string is embedded in S5. In the quantum problem this zero mode is quantized and the wavefunction will be spread
on S3. In the classical theory we expect to find the same time delay for scattering of two magnons associated with
two arbitrary points on S3.
19 The phase in [12] contains further terms in a 1/

√
λ expansion which we are not checking here.
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the density of J is constant. In [36] it was defined so that the density of E + J is constant.
In our case, we have defined it in such a way that the density of E is constant, since we have
set ṫ = 1 in conformal gauge. All these choices give the same definition for the x variable
when we consider the string ground state. The difference lies in the different length in x that
is assigned to the magnons, which have E − J 
= 0. Thus the S-matrix computed in different
gauges will differ simply by terms of the form eipif (pj ), where f (pj ) is the difference in the
length of the magnon on the two gauges. Of course, the Bethe equations are the same in both
cases since the total length of the chain is also different and this cancels the extra terms in
the S-matrix. The position variable that is usually chosen on the gauge theory side assigns a
length 1 to the impurity. At large λ we can ignore 1 relative to λ and say that the length of
the impurity is essentially zero. Thus, we can say that the gauge theory computation is using
coordinates where the density of J is constant. Using the relation between the gauge theory
spatial coordinate l and our worldsheet coordinate x (2.14) (which is valid in the region where
E − J = 0), we get that the interval between two points separated by a magnon are related by

�l =
∫

dx
dJ

dx
=

∫
dx

dE

dx
−

(
dE

dx
− dJ

dx

)
= 2π√

λ
�x − ε, (3.11)

where �l is the interval in the conventions of [12] and �x is the interval in our conventions.
So we see that in our gauge the magnon will have an extra length of order ε(p). Thus
Sstring-Bethe = Sours eip1ε2 , where Sstring-Bethe is the S-matrix in the conventions used in [12].
This cancels the last term in (3.10). In summary, after expressing the result in conventions
adapted to the gauge theory computation we find that for sign

(
sin p1

2

)
> 0 and sign

(
sin p2

2

)
> 0

we get

δ(p1, p2) = −
√

λ

π

(
cos

p1

2
− cos

p2

2

)
log

[
sin2 p1−p2

4

sin2 p1+p2

4

]
. (3.12)

The cases where p < 0 can be recovered by shifting p by a period so that sin 2π+p

2 > 0. The
function (3.12) should be trusted when sin pi

2 > 0, and it should be defined to be periodic
with period 2π outside this range. Note that this function goes to zero when p1 → 0 with p2

fixed. When p is small we need to quantize the system. We can check that, after quantization,
the S-matrix is still trivial for small p1 and fixed p2. This can be done by expanding small
fluctuations around our soliton background. We find that the small excitations propagate freely
through the soliton.

The leading answer (3.12) vanishes at small p. In fact, at small p it is important to properly
quantize the system and the result depends on the polarizations of the states, see [35]. For
example, in the SU(1|1) sector [35] found (see also [36])

Sstring = −1 + i
1

2

(
p1

√
1 +

λ

4π2
p2

2 − p2

√
1 +

λ

4π2
p2

1 − p1 + p2

)
. (3.13)

Corrections to the leading phase (3.12) were computed in [37] and some checks were
made in [38, 39].

On the gauge theory side the phase is known up to three loop orders in λ [17]. Of course,
finding the full interpolating function is an outstanding challenge20.

Finally, to complete the discussion of scattering states, we comment on the spacetime
picture of the scattering process. In the classical theory, besides specifying p, we can also
specify a point on S3 for each of the two magnons that are scattering off each other. We do

20 An all loop guess was made in [43] (see also [44]), but this guess appears to be in conflict with the strong coupling
results obtained via AdS/CFT .
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Figure 7. Evolution of the soliton anti-soliton scattering state. Time increases to the right. We
have chosen a rotating frame on the sphere where the point with infinite J is stationary. At t = 0 the
string is all concentrated at a point, the point that carries infinite J . The state looks asymptotically
as two free magnons on opposite hemispheres and with the same end points.

not know the general solution. The sine-Gordon analysis we did above applies only if the
point on S3 is the same for the two magnons or are antipodal for the two magnons. In the
first case we have a soliton–soliton scattering in the sine-Gordon model and in the second we
have a soliton–anti-soliton scattering. Both give the same classical time delay. The soliton–
anti-soliton scattering with p1 = −p2 looks initially like loop of string made of two magnons.
One of the end points has infinite J and the other has finite J . The point in the front, which
initially carries a finite amount of J , looses all its J and it moves to the left. The loop becomes
a point and then the loops get formed again but with the finite J point to the left, behind the
point that carries infinite J . See figure 7. The soliton–soliton scattering is represented by a
doubly folded string that looks initially like a two magnon state. As time evolves the point in
the front, which carries finite J , detaches from the equator and moves back to the other end
point which carries infinite J . The final picture is, again, equivalent to the original one with
front and back points exchanged. We see that in both cases asymptotic states are well defined
and look like individual magnons.

3.3. Bound states

One interesting property of the sine-Gordon theory is that it displays an interesting set of
localized states which can be viewed as soliton–anti-soliton bound states. The corresponding
classical solutions are given by performing an analytic continuation v → ia in (3.5):

tan
φ

2
= 1

a

sin γaat

cosh γax
, γ −2

a = 1 + a2. (3.14)

In the semiclassical approximation to the sine-Gordon theory we can quantize these modes
[24, 40]. These particles then appear as poles in the S-matrix, [41].

In this section, we will use these sine-Gordon solutions (3.14) in order to produce solutions
representing bound states of magnons. We will then quantize them semiclassically.

We can start with solution (3.14) and we boost it with a boost parameter γ . Then the
soliton and anti-soliton components have rapidities

θ̂1,2 = θ̂ ± iθ̂a, v = tanh θ̂ , a = tan θ̂a, (3.15)

where v characterizes the velocity of the bound state and a is the parameter a appearing in the
centre-of-mass frame solution (3.14). In the sine-Gordon theory the energy is given by the
sum of the energies of a soliton–anti-soliton pair with these rapidities: (3.15)

Ebound
sg = E(θ̂ + iθ̂a) + E(θ̂ − iθ̂a) = cosh(θ̂ + iθ̂a) + cosh(θ̂ − iθ̂a) = 2 cosh θ̂ cos θ̂a. (3.16)

We can understand this formula as resulting from analytic continuation of the formula that
gives a similar additive result for scattering states. Recall that (3.14) is a configuration obtained
from a scattering solution (3.5) by analytically continuing the rapidities.
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We now want to understand what these states correspond to in our system. From the
string theory point of view we can label the states in terms of the momentum p, or in terms of
the rapidity θ̂ related by (3.4). The localized solutions (3.14) should correspond to localized
solutions on the worldsheet that come from analytically continuing the parameters of scattering
solutions. Thus we expect that, also in the string theory, the energy will be a sum of the energies
of its components

εbound = ε(θ̂1) + ε(θ̂2) =
√

λ

π

[
1

cosh θ̂1
+

1

cosh θ̂2

]
. (3.17)

This expression for the energy is important for what we will do later. We have checked directly
that starting with a boosted version of (3.14), inverting the equation (3.2) and computing the
energies we get (3.17). See appendix B for more details. From the rapidities, we can also define
the momenta of each of the particles through relation (3.4). These momenta are complex:

p1,2 = p ± iq,
1

cosh θ̂i

= sin
pi

2
. (3.18)

We also see that the total momentum of the state is P = 2p.
In order to semiclassically quantize these states we need to find the period of oscillation.

This is the time it takes for the solution to look the same up to an overall translation. We find

T = 2π
γ

γaa
= 2π

cosh θ̂

sin θ̂a

= 2π
1

tanh q

2

, note that tan
p

2
= γa

vγ
, (3.19)

where we used (3.18). We now define the action variable n which in the quantum theory
should be an integer, through the equation

dn = T

2π
dε|p =

√
λ

π
sin

p

2
cosh

q

2
dq, or n = 2

√
λ

π
sin

p

2
sinh

q

2
, (3.20)

where we keep the momentum fixed, which is another conserved quantity. We obtain

ε =
√

λ

π

(
sin

p1

2
+ sin

p2

2

)
= 2

√
λ

π
sin

p

2
cosh

q

2
=

√
n2 +

4λ

π2
sin2

p

2
, (3.21)

where we should trust this formula only for large n. So, in the regime where we can trust it,
these states have more energy than two magnons each with momentum p. We do not see any
sign of a breakdown in our analysis for very large n. So for large but finite λ there is an infinite
number of bound states. It looks like these bound states should belong to general massive
representations of SU(2|2)2 since they are those that generally correspond to a two magnon
configuration.

Note that the bound states carry momentum P = 2p and that as p varies from zero to π ,
P varies from 0 to 2π and the two end points of the string move over the whole equator of the
S2. But the configuration is not periodic in P. Namely, for small P we have a bound state of
two magnons with small p, while for P ∼ 2π we have a bound state of two large magnons
with p ∼ π .

The spacetime picture of these solutions varies considerably depending on parameters
p and q. The easiest case to analyse is the solution corresponding to the breather at rest.
This corresponds to choosing maximal p = π . These are strings with one fixed point
(ϕ − t = const) which sweep the entire sphere as they evolve in time; see figure 8. At quarter
the period they look like two magnons of maximal p. The value of q controls the period of
the sweep. Because P = 2p = 2π for this case there is no distance between the end points
of the string. As we decrease p a gap opens up while the strings still sweep the sphere, see
figure 9(a). At p = π

2 the gap is maximal and the solutions change character: they do not
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Figure 8. Evolution of the bound state with p = π . Time increases to the right. We have chosen a
rotating frame on the sphere where the point with infinite J is stationary. At t = 0 the string is all
concentrated at a point, the point that carries infinite J . As time progresses a loop forms, then this
loop sweeps the whole sphere and becomes a point again. The motion repeats itself again except
that the loop has the opposite orientation. Thus in each period we performs two sweeps of the
sphere.

(a) (b)

Figure 9. Snapshots of other string bound states. (a) Large p bound state. (b) Small p bound state.

sweep the sphere any longer. For small p the solution is bounded to a small region of the
sphere, see figure 9(b). q still controls the period. In appendix B, we discuss the relevant
variables and calculate the energies of these solutions. It would be nice to find more explicit
expressions for the solutions.

We can now compare these results to the bound states at weak coupling. We focus on the
SU(2) sector for simplicity and to lowest order in the ’t Hooft coupling. In that case we simply
have the XXX spin chain [5]. It is then easy to show by looking at the poles of the S-matrix
that there is single bound state of two magnons. Writing the momenta as p1,2 = p ± iq one
can check that the bound state has

q = log(cos p). (3.22)

Using the dispersion relations for magnons we can check that the energy is

ε = ε(p1) + ε(p2) =
2∑

i=1

1 +
λ

2π2
sin2 pi

2
= 2 +

λ

2π2
2 cos2 p

2
sin2 p

2
. (3.23)

In this case we see that the energy is smaller than the sum of the energies of two magnons with
momentum p. We also see that the size of the bound state goes to infinity, and the binding
energy disappears, when q → 0. In other sectors, such as the SU(1|1) or SL(2) sectors there
are no bound states.

We see that the number of bound states is very different at weak and strong couplings.
Presumably, as we increase the coupling new bound states appear. In the ordinary sine-Gordon
theory bound states disappear as we increase the coupling; we start with a large number at
weak coupling and at strong coupling there are none, we are left just with the solitons. A new
feature of our case is that the number of bound states is infinite at large λ. So at some value
of the coupling we should be getting an infinite number of new bound states. The situation
is somewhat similar to the spectrum of excitations of a quark–anti-quark pair in [42]. It turns
out that states with large n have large size, so that we need large J to describe them accurately
enough.
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4. Discussion

In this paper, we have introduced a limit which allows us to isolate quantum effects from
finite volume effects in the gauge theory/spin chain/string duality. In this limit, the symmetry
algebra is larger than what is naively expected. This algebra is a curious type of 2+1 super-
Poincaré algebra, without the lorentz generators, which are not a symmetry. The algebra is
the same on both sides. In this infinite J limit the fundamental excitation is the ‘magnon’
which is now identified on both sides. The basic observable is the scattering amplitude of
many magnons. Integrability should imply that these magnons obey factorized scattering so
that all amplitudes are determined by the scattering matrix of fundamental magnons. The
matrix structure of this S-matrix is determined by the symmetry at all values of the coupling.
So the whole problem boils down to computing the scattering phase [9]. This phase is a
function of the two momenta of the magnons and the ’t Hooft coupling. At weak coupling it
was determined up to three loops [17]. At strong coupling we have the leading order result,
computed directly here and indirectly in [12] (see also [35]). The one loop sigma model
correction to the S-matrix was computed using similar methods in [37]. As in other integrable
models, it is very likely that a clever use of crossing symmetry plus a clever choice of variables
would enable the computation of the phase at all values of the coupling. Recently, a crossing
symmetry equation has been written by Janik [46]. The kinematics of this problem is a bit
different than that of ordinary relativistic (1+1)-dimensional theories. In fact, the kinematic
configuration has a double periodicity [46]. This is most clear when we define a new variable
θp as

|	k|2 = λ

π2
sin2 p

2
= sinh2 θp, ε = cosh θp. (4.1)

We have a periodicity in θp → θp + 2π i and in p → p + 2π . Crossing is related to the change
θp → θp + iπ . The full amplitude does not need to be periodic in these variables since there
can be branch cuts. Of course, one would like to choose a uniformizing parameter that is
such that the amplitude becomes meromorphic. A proposal for one such parameter was made
in [46]. Perhaps the (2+1)-dimensional point of view might be useful for shedding light on
the choice of variables to describe the scattering process. An additional complication is that
the S-matrix appears to depend on the two momenta, rather than a single variable (the centre-
of-mass momentum). On the string theory side it is very reasonable to expect some type of
crossing symmetry due to the form of the dispersion relation, which is quadratic in the energy.
Indeed, crossing is a property of the first two orders in the coupling constant expansion away
from strong coupling [38]. At weak coupling crossing symmetry is not manifest because the
weak coupling expansion amounts to a non-relativistic expansion; but it should presumably
be a symmetry once the full answer is found.

The bound states that we have encountered at strong coupling should appear as poles
in the exact S-matrix21. Presumably, as we increase the ’t Hooft coupling we will have, at
some point, an infinite number of poles appearing. In the sine-Gordon model the number of
bound states changes as we change the value of the coupling [41]. But we always have a finite
number.

We should finally mention that perhaps it might end up being most convenient to think
of the problem in such a way that the magnon will be composed of some more elementary
excitations, as is the case in [44]22. On the other hand, we do not expect these more elementary

21 These are not present in the semiclassical result (3.12).
22 The equivalence [44] between the Hubbard model and the gauge theory holds up to three loop orders. Beyond
three loops it agrees with the all loop guess in [43], but the guess in [43] seems to be in conflict with string theory at
large λ.
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excitations to independently propagate along the chain. For this reason it is not obvious how
to match to something on the string theory side.

Acknowledgments

We would like to thank N Beisert, S Frolov, K Intrilligator, J Plefka, N Seiberg, M Staudacher
and I Swanson for useful comments and discussion. This work was supported in part by DOE
grant #DE-FG02-90ER40542.

Appendix A. The supersymmetry algebra

We start with a single SU(2|2) subgroup first. This algebra has two SU(2) generators and a
non-compact generator k0 ≡ ε = E − J . The superalgebra is

{Q′bs
,Qar} = εbaεsrk0 + 2[εbaJ sr − εsrJ ba] (A.1)

{Qbs,Qar} = 0, {Q′bs
,Q′ar} = 0, (A.2)

(with ε+− = 1) where we denote by a, b the first SU(2) indices and by rs the second SU(2)

indices. We also have a reality condition (Qar)† = εabεrsQ
′bs . The central extensions

considered in [9] involve two other central generators k1, k2 appearing on the right-hand side
of (A.2), we will arbitrarily choose the normalization of these generators in order to simplify
the algebra. In order to write the resulting algebra it is convenient to put together the two
generators as

qαar = (Qar ,Q′ar
), or q+ar = Qar, q−ar = Q′ar

, (A.3)

where α, β will be SL(2, R) = SO(2, 1) indices. We introduce the gamma matrices

(γ0)
β
α = iσ 3, (γ1)

β
α = σ 1, (γ2)

β
α = σ 2, (γµ)αβ = εαδ(γµ)

β

δ . (A.4)

The full anti-commutators will now have the form

{qαar , qβbs} = iεbaεsr (γµ)αβkµ − 2εαβ[εbaJ sr − εsrJ ba]. (A.5)

The smallest representation of this algebra contains a bosonic doublet and a fermionic
doublet transforming as (1, 2)b + (2, 1)f under SU(2)×SU(2). If we think of these as particles
in three dimensions, then we also need to specify the 2+1 spin of the excitation. It is 0 for the
bosons and + 1

2 for the fermions. Let us call them φr and ψa . Note that this representation
breaks parity in three dimensions. Once we combine this with a second representation of
the second SU(2|2) factor and the central extensions we obtain the eight transverse bosons
and fermions. We then have excitations φrφ̃r ′

which are the bosons in the four transverse
directions in the sphere. They have zero spin, which translates into the fact that they have
zero J charge. This is as expected for insertions of impurities of the type Xi, i = 1, 2, 3, 4
corresponding to the SO(6) scalars which have zero charge under J . We can also form the
states ψaψ̃a′

. These have spin one from the (2+1)-dimensional point of view. These states are
related to impurities of the form ∂iZ, which have J = 1. States with a boson and a fermion,
such as φrψ̃a′

or ψaφ̃r ′
correspond to fermionic impurities, which have J = 1

2 . Note that the
spectrum is not parity invariant, we lack particles with negative spin. This is expected since
parity in the x1, x2 plane of the coordinates in [20] is not a symmetry.
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Appendix B. Details about the analysis of bound states

We choose coordinates for the two sphere so that

ds2 = dθ2 + sin2 θ dϕ2. (B.1)

Given a solution of the string theory on R ×S2 in conformal gauge, and with t = τ , we define
the sine-Gordon field as

sin2 φ = θ ′2 + sin2 θϕ′2. (B.2)

We now want to invert this relation. From the Virasoro constraints we can solve for ϕ′ and ϕ̇

in terms of θ . We obtain

sin2 θϕ′2 = 1
2

[
1 − θ̇2 − θ ′2 −

√
(1 − θ̇2 + θ ′2)2 − 4θ ′2]

sin2 θϕ̇2 = 1
2

[
1 − θ̇2 − θ ′2 +

√
(1 − θ̇2 + θ ′2)2 − 4θ ′2]. (B.3)

Inserting this into (B.2) we get

sin2 φ = θ ′2 + sin2 θϕ′2 = 1
2

[
1 − θ̇2 + θ ′2 −

√
(1 − θ̇2 + θ ′2)2 − 4θ ′2]. (B.4)

Taking the time derivative of this equation we find something involving φ̇ on the left-hand
side and on the right-hand side we will get terms involving θ̈ and θ̇ ′. The terms involving θ̈

can be eliminated by using the equation of motion so that we only have single time derivatives.
Thus we will find an equation of the form

φ̇ = f (θ, θ̇ , θ ′, θ̇ ′). (B.5)

This together with (B.4) determine θ and θ̇ at a particular time in terms of φ and φ̇ at that time.
Note that to find θ, θ̇ we will need to solve a differential equation in x. Once we determine θ

and θ̇ at a particular time, we can use the equation of motion for θ to determine them at other
times. Alternatively, we can solve these two equations at each time.

Going through the above procedure and inverting the equations is not straightforward in
practice. Let us go over some of the cases that we are interested in. Here, we will only invert
the equations in one space-like slice. This is all we need in order to calculate the energies used
in section 3. An exactly solvable case is the breather. The solution has a special time t = 0
where the sine-Gordon field vanishes. From (B.4) we conclude that θ ′ = 0 at t = 0. Due to
the asymptotic boundary conditions we also conclude that θ = π/2 at t = 0. We can expand
the solution around t = 0 and obtain from (B.4)

2γa

cosh γax
= θ̇ ′√

1 − θ̇2
. (B.6)

Integrating this equation we find

θ̇ |t=0 = 2 sinh γax

cosh2 γax
. (B.7)

Using the Virasoro constraints (B.3) we can obtain ϕ̇ on the slice, which is all we need to
calculate the energy. The result is the expected analytic continuation of the sum of the energy
of two magnons (3.17).23

Calculating the energy of the boosted breathers is more involved. In this case we need to
solve the problem around a space-like slice t − vx = 0. Going through a similar procedure as
before we get

23 Incidentally, this same calculation solves for the energy of the, more obvious, scattering solution as well.
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2B

cosh Bu
= − ∂2

uθ√
1 − (∂uθ)2

+ cot θ
√

1 − (∂uθ)2 (B.8)

B ≡ γa

vγ
, u ≡ vγ 2(x − vt). (B.9)

We are interested in solving this equation for boundary conditions such that θ = π
2 at

u = ±∞, so both end points of the string are on the same equator. It is important to note that
the solution to this differential equations depends only on B as a parameter. If the sum rule
for the energies (3.17) is to hold in this case we should obtain

E − J = 1

v

B

1 + B2
�ϕ = 2p = 4 arcsin

B√
1 + B2

. (B.10)

Equation (B.8) can be solved explicitly for B → 0 and B → ∞. In both cases we obtain the
expected result. We also solved the problem numerically (for B � 1) and found the correct
answer. It is most clear, when solving the problem numerically, that solutions change character
at B = 1. It is at this point that they reach the pole of the sphere. Small B solutions are
localized in the sphere, while large B solutions sweep it. Therefore, B is the relevant parameter
to study the type of spacetime picture of the solution, while q controls the period (3.19).

Note that if we hold p fixed and we send q or n to infinity, then we see from (3.19) that
v → 0. The solution to (B.8) depends on x through a function of u ∼ vx for small v. This
implies that the size of the state increases as we increase n keeping p fixed. In fact, it is
possible to check that it increases both in the x and l coordinates, which are related by (3.11).
For the bound state at rest, large n means large a. We see from (B.7) that its size in x space is
approximately 2a, while from (3.17) we see that the energy goes as

√
λ

π
2a. Thus, from (3.11)

we see that the size in the l variables goes as �l ∼ 2a π√
λ

.
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